živel

Hlavní kategorie

Antivirové komponenty,elektronické komponenty,pneumatické komponenty,hala komponenty,flash komponenty,hydraulické komponenty,elektrické komponenty,Exkomponenty.

hala

Úvod

halaelementisasemiconductorthatusesthehalaeffect.Itisgenerallyusedtodeterminetherotorspeedinamotor,suchasthemagneticDrums,coolingfansincomputers,etc.;isamagneticsensorbasedonthehalaeffect,whichhasdevelopedintoadiversefamilyofmagneticsensorproductsandhasbeenwidelyused.

Výrobní materiály

Halové prvky lze vyrobit z různých polovodičových materiálů, jako jsou Ge, Si, InSb, GaAs, InAs, InAsP a vícevrstvé polovodičové heterostrukturní materiály kvantové studny atd.

Výhody

Halová zařízení mají mnoho výhod a jejich konstrukce je pevná. Malé rozměry, lehkost, dlouhá životnost, snadná instalace, nízká spotřeba energie, vysoká frekvence (až 1 MHz), odolnost proti vibracím, nebojí se znečištění ani koroze prachem, olejem, vodní párou a solí.

Hydraulické

Klasifikace

c Hydraulickéké součásti zahrnují především jednocestný ventil, redukční ventil, přepouštěcí ventil, tlakový regulační ventil, průtokový regulační ventil, hydraulický válec, hydraulická čerpadla, hydraulické ventily (tlakové ventily, průtokové ventily, reverzní ventily), hydraulické ventily, příslušenství pro hydraulické ventily, ventily a ventily s ventily, ventily, ventily, ventily, ventily a ventily

Použití

Hydraulickécomponentshaveawiderangeofuses.Hydraulicképressmanufacturers,aswellasmetallurgicalsteelcompanies,usethemmoreoften,andtheyareanimportantpartofautomationequipment.

Pneumatický

Klasifikace

Pneumatickýké komponenty jsou obecně rozděleny na: válec, rychlospojka, omezovač průtoku válce, pneumatický zpožďovací ventil, filtr, PU hadice, miniaturní spoje, univerzální závitové spoje, pneumatické ventily, sušičky, přetlakové ventily + ovládání elektromagnetického ventilu + válce atd.

aplikace

Pneumatickýké komponenty lze použít v: potravinářském průmyslu, oděvním průmyslu, polygrafickém průmyslu, polovodičovém průmyslu, automobilovém průmyslu. Pokud vložíte zdroj pneumatického vzduchu (stlačený vzduch, vakuum, jednotka vzduchového filtru); ovládací část (různé elektromagnetické ventily, pneumatické ventily, pneumatické ventily, ventily, ruční ventily, přetlakové ventily, ventily, přetlakové ventily, ventily )spojenyPokud se podíváte, zjistíte, že pohyb realizovaný elektrickou energií lze realizovat pneumaticky.

Nevýhody

However,thedisadvantagesofpneumaticcomponentsarepoorpositioningaccuracy(duringoperation)andhighnoise.

InFLASHanimationproduction,weoftenneedtousecomponents.

Definice

Acomponentisagraphic,buttonorasmallanimationthatcanberepeatedlytakenout.Thesmallanimationinthecomponentcanbeplayedindependentlyofthemainanimation,andeachcomponentcanbemultipleindependentAcombinationofelements.Toputitbluntly,acomponentisequivalenttoareusabletemplate,andusingacomponentisequivalenttoinstantiatingacomponententity.Theadvantageofusingcomponentsisthattheycanbereused,reducingfilestoragespace.

Funkce

TherearemanytimesintheFLASHthatneedtoreusematerials,thenwecanconvertthematerialsintocomponents,orsimplycreatenewcomponents.Inordertofacilitaterepeateduseoreditandmodifyagain.Componentscanalsobeunderstoodasoriginalmaterials,whichareusuallystoredinacomponentlibrary.Theelementcanbemodifiedagain,butmodifyingtheelementinthescenewillnotmodifythepropertiesoftheelementitself.

Komponenty mají obvykle tři tvary: Komponenty tlačítka.

Itisasegmentofflashanimation,whichcanbeplayedindependentlyofthemainanimation.Themovieclipcanbeanintegralpartofthemainanimation.Whenthemainanimationisplayed,themovieclipcomponentwillalsobeplayedinaloop.

Themoviefragmentsintheflashmoviehavetheirowntimelineandattributes.Itisinteractiveandisthemostversatileandfunctionalpart.Itcancontainexamplesofinteractivecontrols,sounds,andothermovieclips,anditcanalsobeplacedinthetimelineofthebuttoncomponenttocreateananimationbutton.

Buttoncomponents:interactivecontrolbuttonsusedtocreateanimationstocorrespondtothemousetime(suchasclick,release,etc.).Thebuttonhasfourdifferentstateframesofup,over,down,andhit.Differentcontentcanbecreatedonthedifferentstateframesofthebutton.Itcanbeastillgraphicoramovieclip,anditcangivethebuttonfieldtime.Interactiveactionsmakethebuttonshaveinteractivefunctions.

Graphiccomponent:Agraphiccomponentisareusablegraphic,whichcanbeacomponentofamovieclipcomponentorascene.Thegraphicelementisastillpicturewithoneframe,whichisoneofthebasicelementsformakinganimation,butitcannotaddinteractivebehaviorandsoundcontrol.

Graphicelementsinflasharesuitableforthereuseofstaticimages,ortocreateanimationsassociatedwiththemaintimeline.Itcannotprovideaninstancename,norcanitbereferencedinActionScript.

Method1:Createanewblankcomponent,andtheninsertthecontentofthecomponentinthecomponenteditingstate.Selectthemenu"Insert"->"NewComponent"orpressthekeyboardctrl+F8tocreateanewcomponent.

Method2:Convertobjectsonthesceneintocomponents.Selectanexistingcomponentinthescene,clicktherightmousebutton,andselectConverttocomponent.

Metoda 3: Převod animace na komponenty.

Eachcomponenthasamaximumpowerlimit,whetheritisanactivedevice(suchasamplifier)orPassivecomponents(suchascablesorfilters).Understandinghowpowerflowsinthesecomponentshelpstohandlehigherpowerlevelswhendesigningcircuitsandsystems.

Howmuchpowercanithandle?Thisisanunavoidablequestiontomostofthecomponentsinthetransmitter,andthequestionisusuallypassivecomponents,suchasfilters,Couplerandantenna.However,withthepowerlevelofmicrowavevacuumtubes(suchastravelingwavetubes(TWT))andcoreactivedevices(suchassiliconlaterallydiffusedmetaloxidesemiconductor(LDMOS)transistorsandgalliumnitride(GaN)fieldeffecttransistors(FET))Wheninstalledinawell-designedamplifiercircuit,theywillalsobelimitedbythepowerhandlingcapabilitiesofcomponentssuchasconnectorsandevenprintedcircuitboard(PCB)materials.Understandingthelimitationsofthedifferentcomponentsthatmakeupahigh-powercomponentorsystemcanhelpanswerthislong-standingquestion.

Thetransmitterrequiresthepowertobewithinthelimit.Generallyspeaking,theselimitsarestipulatedbygovernmentagencies,suchasthecommunicationstandardsestablishedbytheFederalCommunicationsCommission(FCC)intheUnitedStates.Butin"unregulated"systems,suchasradarandelectronicwarfare(EW)platforms,therestrictionsaremainlyduetotheelectroniccomponentsinthesystem.

Whencurrentflowsthroughthecircuit,partoftheelectricalenergywillbeconvertedintoheat.Circuitsthathandlelargeenoughcurrentswillheatup-especiallyinplaceswithhighresistance,suchasdiscreteresistors.Thebasicideaof​​settingpowerlimitsforcircuitsorsystemsistouselowoperatingtemperaturestopreventanytemperaturerisethatmaydamagethecircuitorsystemcomponentsormaterials,suchasthedielectricmaterialsusedinprintedcircuitboards.Interruptionswhencurrent/heatflowsthroughthecircuit(suchaslooseorsolderedconnectors)canalsocausethermaldiscontinuitiesorhotspots,whichcancausedamageorreliabilityissues.Temperatureeffects,includingdifferencesinthecoefficientofthermalexpansion(CTE)betweendifferentmaterials,canalsocausereliabilityproblemsinhigh-frequencycircuitsandsystems.

Theheatalwaysflowsfromthehighertemperatureareatothelowertemperaturearea.Thisprinciplecanbeusedtotransfertheheatgeneratedbythehigh-powercircuitawayfromtheheatsource,suchasatransistororTWT.Ofcourse,theheatdissipationpathfromtheheatsourceshouldincludeadestinationcomposedofmaterialsthatcanclearordissipateheat,suchasametalgroundlayeroraheatsink.Inanycase,thethermalmanagementofanycircuitorsystemcanonlybeoptimallyachievedifitisconsideredatthebeginningofthedesigncycle.

Generally,thermalconductivityisusedtocomparetheperformanceofmaterialsusedtomanageheatinRF/microwavecircuits.Thisindexismeasuredbythepower(W/mK)appliedpermeterofmaterialperdegree(inKelvin).Perhapsthemostimportantfactorofthesematerialsforanyhigh-frequencycircuitisthePCBstackup,whichgenerallyhaslowthermalconductivity.Forexample,FR4laminatematerialsoftenusedinlow-costhigh-frequencycircuits,theirtypicalthermalconductivityisonly0.25W/mK.

Incontrast,copper(depositedonFR4asagroundplaneorcircuittrace)hasathermalconductivityof355W/mK.Copperhasalargeheatflowcapacity,whileFR4hasalmostnegligiblethermalconductivity.Inordertopreventhotspotsonthecoppertransmissionline,itisnecessarytoprovideahighthermalconductivitypathfromthetransmissionlinetothegroundplane,heatsinkorsomeotherhighthermalconductivityarea.ThinnerPCBmaterialallowsshorterpathstothegroundplane,becauseplatedvias(PTH)canbeusedtoconnectthecircuittracestothegroundplane.

Ofcourse,thepowerhandlingcapabilityofaPCBisafunctionofmanyfactors,includingconductorwidth,groundplanespacing,andmaterialdissipationfactor(loss).Inaddition,thedielectricconstantofthematerialwilldeterminethecircuitsizeatagivenidealcharacteristicimpedance,suchas50Ω,somaterialswithhigherdielectricconstantvalues​​allowcircuitdesignerstoreducethesizeoftheirRF/microwavecircuits.Inotherwords,theseshortermetaltracesmeanthatPCBdielectricmaterialswithhigherthermalconductivityarerequiredtoachievecorrectthermalmanagement.

Underagivenapplicationpowerlevel,circuitmaterialswithhigherthermalconductivityhavealowertemperaturerisethanmaterialswithlowerthermalconductivity.Unfortunately,FR4isnodifferentfrommanyotherPCBmaterialswithlowthermalconductivity.However,theheattreatmentandpowerhandlingcapabilitiesofthecircuitcanbeimprovedbyspecifyingtheuseofPCBmaterialsthathaveahigherthermalconductivitythanFR4atleast.

Forexample,althoughthethermalconductivityofcopperhasnotyetreachedthelevel,severalofRogers’PCBmaterialscanprovidemuchhigherthermalconductivitythanFR4.ThethermalconductivityofRO4350Bmaterialis0.62W/mK,whilethecompany’sRO4360laminatehasathermalconductivityof0.80W/mK.Althoughthereisnosignificantimprovement,itdoeshavetwotothreetimestheheat/powercapacityimprovementcomparedwithFR4stack,whichcanrealizetheeffectivedissipationoftheheatgeneratedbytheRF/microwavecircuit.Thesetwomaterialsareparticularlysuitableforamplifierapplicationswithabuilt-inheatsource(transistor).Theybothhavealowcoefficientofthermalexpansion(CTE)value,sotheycanminimizedimensionalchangeswithtemperature.

Manycommercialcomputer-aidedengineering(CAE)softwaredesignpackagescanmodeltheheatflowthroughtheRF/microwavecircuitunderthegivenapplicationpowerlevelandthegivencircuitparametersettings,includingtheheatofthePCB.Conductivity.Thesesoftwaredesignpackagescontainmanyindividualprograms,suchasSonnetSoftware’selectromagneticsimulation(EM)tool,Fluent’sIcePaksoftware,ANSYS’TASPCBsoftware,andFlomerics’Flothermsoftware.Theyalsoincludemanydesignsoftwaretoolsuites,suchasAgilent'sAdvancedDesignSystem(ADS),ComputerSimulationTechnology(CST)'sCSTMicrowaveStudio,andAWR'sMicrowaveOffice.

ThesesoftwaretoolscanevenbeusedtostudytheimpactofdifferentworkingenvironmentsonthepowerprocessingcapabilitiesofRF/microwavecircuits,suchasthosethatmayoccuratsufficientlyhighpowerlevelsintheaircraft’slowatmosphericpressureorhighaltitudeenvironmentArc.TheseprogramscanalsoimprovethepowerhandlingcapabilitiesofdiscreteRF/microwavecomponentsbymodelingthefielddistributionofenergyflowingthroughcomponents(suchascouplersorfilters).

Ofcourse,PCBmaterialisnottheonlyfactorthataffectsheatflowinRF/microwavecircuitsorsystems.Thelimitationsofcablesandconnectorsonpower/heatinhighfrequencysystemsarealsowellknown.Inacoaxialassembly,theconnectorcanusuallyhandlemoreheat/powerthanthecabletowhichitisconnected,anddifferentconnectorshavedifferentpowerratings.Forexample,thepowerratingoftheN-typeconnectorisslightlyhigherthanthatoftheSMAconnectorwithasmallersize(andhigherfrequencyrange).Theaveragepowerandpeakpowerofcablesandconnectorsarerated,andthepeakpowerisequaltoV2/Z,whereZisthecharacteristicimpedanceandVisthepeakvoltage.Asimplemethodofestimatingtheaveragepowerratingistomultiplythepeakpowerratingofthecableassemblybythedutycycle.

ManycablesupplierssuchasAstrolabhavedevelopedspecialcalculationprogramstocalculatethepowerhandlingcapacityoftheircoaxialcableassemblies.Somecompanies,suchasTimesMicrowaveSystems,providefreedownloadablecalculationprogramsthatcanbeusedtopredictthepowerhandlingcapabilitiesoftheirowndifferenttypesofcoaxialcables.

Itisworthnotingthatthisisanextremelysimplistictreatmentofcomplextopics.Italsodoesnotcovertopicssuchasmaterialbreakdownvoltage,PCBdissipationfactor(dissipationfactor),howthecircuit’spowerhandlingcapacityisaffected,theimpactonPCBmaterialcoefficientofthermalexpansion(CTE)performance,andthedifferenceinheatingeffectsbetweencontinuouswaveandpulsedenergysources.

Incomponents,circuits,andsystems,therearemanycomplexphenomenathatmayaffectthepowerprocessingcapabilities,includingcomponentswithdifferentRF/microwavepowercapabilitiessuchasswitcheswith"on"and"off"states.Inadditiontosoftwareprograms,toolsthatcanbeusedforthermalanalysiscanalsoprovidethermalimagingcapabilitiesbasedoninfrared(IR)technology,whichcanbeusedtosafelystudyheataccumulationincomponents,circuits,andsystems.

Související články
HORNÍ