Optics

Basicintroduction

TheoriginofopticshasbeenrecordedintheWestforalongtime.The"ReflectionOptics"byEuclidofAncientGreece(about330~260BC)"(Catoptrica)studiedthereflectionoflight;ArabscholarAlHazen(AI-Hazen,965~1038)wrotean"EncyclopediaofOptics",whichdiscussedmanyopticalphenomena.Opticstrulyformsadiscipline.Itshouldbecountedfromtheerawhenthelawofreflectionandthelawofrefractionwereestablished.Thesetwolawslaidthefoundationofgeometricoptics.

Developmenthistory

Optics(optics)isadisciplinewithalonghistory,anditsdevelopmenthistorycanbetracedbacktomorethan2,000yearsago.Humanresearchonlightinitiallytriedtoanswerquestionssuchas"howcanapersonseethesurroundingobjects".About400BC,theearliestknowledgeofopticsintheworldwasrecordedinChina's"Mojing".Ithas8recordsaboutoptics,describingthedefinitionandgenerationofshadows,thelinearpropagationoflightandpinholeimaging,anditdiscussestherelationshipbetweenobjectsandimagesinflatmirrors,concavesphericalmirrorsandconvexsphericalmirrorsinrigoroustext(seeChineseHistoryofPhysics).

Since"Mojing",inahistoricalperiodofmorethan2,000years,afterthe11thcenturyArabIbnHaysaminventedandproducedtheconvexlens,from1590tothebeginningofthe17thcentury,H.JanssenandH.Lipschsimultaneouslyinventedthemicroscopeindependentlyofeachother,anditwasnotuntilthefirsthalfofthe17thcenturythatW.SnellandR.Descartesattributedtheobservationresultsoflightreflectionandrefractiontothelawofreflectionandrefractionoflightusedtoday.law.

In1665,Newtonconductedanexperimentonsunlight.Itcandecomposesunlightintosimplecomponentstoformalightdistributionwithcolorsarrangedinacertainorder—thespectrum.Itmakespeoplecomeintocontactwiththeobjectiveandquantitativecharacteristicsoflightforthefirsttime.Thespatialseparationofmonochromaticlightsisdeterminedbythenatureoflight.Newtonalsodiscoveredthataconvexlenswithalargeradiusofcurvatureisplacedonanopticalflatglassplate.Whenirradiatedwithwhitelight,agroupofcoloredconcentricringstripesappearatthecontactbetweenthelensandtheglassplate;whenacertainmonochromaticlightisusedWhenirradiated,agroupoflightanddarkconcentricringstripesappeared.LatergenerationscalledthisphenomenonNewton'sring.Withthisphenomenon,thethicknessoftheairgapofthefirstdarkringcanbeusedtoquantitativelycharacterizethecorrespondingmonochromaticlight.

Whilediscoveringtheseimportantphenomena,Newtonbelievedthatlightisakindofparticleflowbasedonthestraight-linepropagationoflight.Theparticlesflyoutofthelightsourceandmoveinastraightlinewithconstantvelocityinahomogeneousmediuminaccordancewiththelawsofmechanics.Andusedthispointofviewtoexplainthephenomenonofrefractionandreflection.Huygenswasanopponentofthetheoryofparticlesoflight.Hefoundedthetheoryofwaves.In1690,hewroteinthebook"TheoryofLight":"Light,likesound,propagatesonasphericalwavesurface."HealsopointedoutthatlightvibrationachievesEachpointofcanberegardedasthevibrationcenterofthesecondarywave,andtheenvelopesurfaceofthesecondarywaveisthewavefront(wavefront)ofthepropagatingwave.Throughoutthe18thcentury,theparticleflowtheoryoflightandthewavetheoryoflighthavebeenroughlyproposed,buttheyarenotverycomplete.

Atthebeginningofthe19thcentury,waveopticswasinitiallyformed,representedbytheworksofT.YangandA.Fresnel.YangYuanfullyexplainedthe"colorofthefilm"andthephenomenonofdoubleslitinterference.FresnelsupplementedtheHuygensprinciplewiththeYoung'sinterferenceprinciplein1818,thusformingtheHuygens-Fresnelprinciplethatiswell-knowntoday.Itcanbeusedtofullyexplainthephenomenonoflightinterferenceanddiffraction.Canexplainthestraightlinepropagationoflight.Infurtherresearch,thepolarizationoflightandtheinterferenceofpolarizedlightwereobserved.Toexplainthesephenomena,Fresnelassumesthatlightisatransversewavepropagatinginacontinuousmedium(ether).Butbecauseofthis,thepropertiesoftheelasticsolidhavetobeimposedontheether.Theetherofthisnatureisunimaginable,andeveniftheetherisadmitted,theopticalphenomenacannotbeconnectedwithotherphysicalphenomena.

In1846,Faradaydiscoveredthatthevibratingsurfaceoflightrotatesinamagneticfield;in1856,W.Weberdiscoveredthatthespeedoflightinavacuumisequaltotheratiooftheelectromagneticunitofthecurrentintensitytotheelectrostaticunit.Theyindicatethatthereisacertaininternalrelationshipbetweenopticalphenomenaandelectromagneticphenomena.

Maxwell’stheoreticalresearcharound1860pointedoutthatchangesinelectricandmagneticfieldscannotbelimitedtoacertainpartofspace,butpropagateataspeedequaltotheratiooftheelectromagneticunitofthecurrenttotheelectrostaticunit.LightisSuchanelectromagneticphenomenon.ThisconclusionwasconfirmedbyHertz'sexperimentin1888.AccordingtoMaxwell’stheory,ifcrepresentsthespeedoflightinvacuum,vrepresentsthedielectricconstantoflightinεandmagneticpermeabilityIsthevelocityinthetransparentmediumofμ,then:

c/v=(εμ)1/2

wherec/visexactlytherefractiveindexofthemedium,so:

n=(εμ)1/2

TheaboveformulagivesthetransparentmediumTherelationshipbetweentheopticalconstantnandtheelectricalconstantεandthemagneticconstantμ.Intermsofunderstandingthephysicalpropertiesoflight,Maxwell'stheoryhastakenabigstepforwardcomparedwithprevioustheories.

However,thistheorycannotexplainthepropertiesofelectricoscillatorsthatgeneratefrequenciesuptothefrequencyoflight,norcanitexplainthedispersionoflightcausedbythechangeinrefractiveindexwiththefrequencyoflight.Itwasnotuntil1896thatH.Lorenzfoundedthetheoryofelectrons,whichexplainedthephenomenonofluminescenceandtheabsorptionoflightbymatter,andalsoexplainedthevariouscharacteristicsoflightpropagationinmatter,includingtheexplanationofthephenomenonofdispersion.InLorentz'stheory,theetherisavastandinfiniteimmobilemedium.Itsonlycharacteristicisthatthelightvibrationinthismediumhasacertainpropagationspeed.

Forsuchimportantissuesasthewavelengthdistributionofenergyintheradiationofahotblackbody,Lorentztheorycannotyetgiveasatisfactoryexplanation.Moreover,ifyouthinkthatLorentz'sconceptofetheriscorrect,thentheetherofmotioncanbeselectedastheframeofreference,sothatpeoplecandistinguishabsolutemotion.Infact,in1887,A.Michelsonetal.usedtheinterferometertomeasurethe"ethericwind"andgotanegativeresult,whichshowsthatbythetimeofLorentz'selectrontheory,peoplestillhavealotofone-sidedunderstandingofthenatureoflight.

In1900,Planckborrowedtheconceptofdiscontinuityfromthemolecularstructuretheoryofmatterandproposedthequantumtheoryofradiation.Itwasbelievedthatelectromagneticwavesofvariousfrequencies(includinglight)couldonlybedeterminedindividuallyDiscreteenergyisemittedfromthevibrator.Thisenergyparticleiscalledaquantum,andthequantumoflightiscalledaphoton.Quantumtheorynotonlynaturallyexplainsthelawofthedistributionoftheradiantenergyoftheglowingbodyaccordingtothewavelength,butalsoputsforwardtheproblemoftheinteractionbetweenlightandmatterwithabrand-newconcept.Quantumtheorynotonlyprovidesnewconceptstooptics,butalsototheentirephysics,anditsbirthisusuallyregardedasthestartingpointofmodernphysics.

In1905,Einsteinusedquantumtheoryinthephotoelectriceffecttomakeaveryclearexpressionforphotons.Hespecificallypointedoutthatwhenlightinteractswithmatter,lightalsotakesphotonsasthesmallestunit.Inaddition,manyexperimentsattheendofthe19thcenturyandthebeginningofthe20thcenturyprovedthequantumnatureoflight.InSeptember1905,theGerman"AnnualBookofPhysics"publishedEinstein's"OntheElectrodynamicsofMovingMedium".Thebasicprincipleofspecialrelativityisputforwardforthefirsttime.Thearticleclarifiesthatclassicalphysics,whichhasdominatedsincetheeraofGalileoandNewton,isappliedonlyatspeedsfarlessthanthespeedoflight,andhisnewtheorycanexplainthecharacteristicsofprocessesrelatedtohigh-speedmotion.Hefundamentallyabandonedtheconceptofetherandsatisfactorilyexplainedtheopticalphenomenonofmovingobjects.

Intheearly20thcentury,ontheonehand,lightinterference,diffraction,polarization,andopticalphenomenaofmovingobjectsconfirmedthatlightisanelectromagneticwave;Thechemicalactionoflighthasundoubtedlyprovedthequantumnatureoflight-theparticlenature.

TheComptoneffectdiscoveredin1922,theRamaneffectdiscoveredin1928,andthehyperfinestructureoftheatomicspectrumthatcanbeobtainedexperimentallyatthattime,theyundoubtedlyindicatethatthedevelopmentofopticscannotbeindependentofquantumphysics.

Theconceptoflightquantuminmodernopticsisnotrepulsivetotheconceptoflightwave,butitneedstobecreatedbyHeisenberg,Schrödinger,Dirac,Feynman,Schwinger,andShinichiroAsanoOnlywiththedevelopmentofquantummechanicsandquantumelectrodynamicscanthetwobeunified.Applyingtheirtheoriescanclarifyatomic,molecular,andionspectra;explaintheeffectsofelectric,magneticandacousticfieldsonthespectrum;andestablishtherelationshipbetweenexcitationconditionsandspectralcharacteristics.Thehistoryofopticsshowsthatthetwomostimportantbasictheoriesinmodernphysics-quantummechanicsandspecialrelativityarebothbornanddevelopedinhumanresearchonlight.

Subjectcontent

Opticsareusuallydividedintogeometricoptics,waveopticsandquantumoptics.

GeometricOptics

Thesubjectofstudyingtheproblemoflightpropagationbasedonseveralbasicprinciplesderivedfromexperiments.Basedontheconceptoflightandthelawsofrefractionandreflectionoflight,itisadisciplinethatdescribesthelawoflightpropagationinamedium.

WaveOptics

Startingfromthefactthatlightisakindofwave,itisadisciplinethatstudiesthelawoflightpropagationinamedium.Itcanbeusedtostudythephenomenonoflightinterference,lightdiffraction,lightpolarizationanditspropagationinanisotropicmedia.Sincethespeedoflightisthesameasthepropagationspeedofelectromagneticwaves,itisspeculatedthatlightisalsoanelectromagneticwave.Thisspeculationhasbeenconfirmedbyallsubsequentexperiments.Theresultsobtainedbyusinggeometricopticsareusuallyalwaystheapproximationsorlimitsofwaveopticsundercertainconditions.

Differentfromgeometricoptics,waveopticsnotonlyinvestigatesthepropagationprocessoflightwithanaperturethatismuchlargerthanthewavelength,butalsostudiesthepropagationprocessoflightwithanyaperture.Waveopticscanalwaysgetthecorrectsolution,butsometimesthewaveopticsmethodismorecomplicated,sothedecisiontousegeometricopticsorwaveoptics,orboth,isusuallybasedonthenatureoftheproblem.Forexample,inthedesignofgeneralopticalsystemsofopticalinstruments,geometricalopticsmethodsareoftenusedtodeterminethestructuralelementsofthesystem,butwaveopticsmethodsmustbeusedwhenobtainingthelightenergydistributionformtoevaluateitsimagingquality.

ThetheoreticalbasisofwaveopticsistheMaxwellequationsofclassicalelectrodynamics.Themacroscopicparametersoflightinthemedium,thedielectricconstantεandthepermeabilityμ,areexpressedascoefficientsinMaxwell'sequations.Thereisasimplerelationshipbetweenthemandtherefractiveindexofthetransparentmediumn:n=(εμ)1/2.Waveopticsdoesnotelaborateontherelationshipbetweenεandμandthestructureofmatter,butfocusesonexplainingthelawoflightwavepropagation.Inestablishingtherelationshipbetweenεandμandmolecularandcrystalstructures,studyingthesecontentsissometimescalledmolecularoptics.Waveopticscanexplaintheaccompanyingprocessoflightpropagatinginscatteringmediaandanisotropicmediaanditsperformanceneartheinterfaceofthemedia;itcanalsoexplaindispersionphenomenaandtheeffectsofpressure,temperature,soundfield,electricfieldandmagneticfieldinvariousmediaonoptics.Theimpactofthephenomenon.

Althoughwaveopticscanexplainthepropagationoflightsatisfactorily,itgenerallycannotexplaintheprocessoflightemissionandabsorption,showingthedifficultiesofclassicalphysics.

QuantumOptics

In1900,whenPlanckwasstudyingblackbodyradiation,inordertotheoreticallydeducetheempiricalformulahehadobtainedatthattimethatwasveryconsistentwithreality,heboldlyproposedThisisacompletelydifferentassumptionfromtheclassicalconcept,thatis,theenergyofthevibratorsthatmakeuptheblackbodycannotchangecontinuously,andcanonlytakediscretevalues:0,hv,2hv,…,nhv,wherenisapositiveinteger,νistheoscillatorfrequency,hisPlanck’sconstant,Itsvalueis6.626×10-34J·s.In1905,EinsteinpopularizedPlanck'sabove-mentionedquantumtheorywhenstudyingthephotoelectriceffect,andthenproposedtheconceptofphotons.Hebelievesthatlightenergydoesnotdistributetheenergyonthewavefrontasdescribedintheelectromagneticwavetheory,butconcentratesontheso-calledphotonparticles.Thiskindofparticlestillmaintainstheconceptoffrequency,andthephotonwithfrequencyνhasenergy.Inthephotoelectriceffect,whenphotonsirradiatethemetalsurface,allelectronsinthemetalareabsorbedatonetime,withoutthetimerequiredforaccumulatingenergyaspredictedbyelectromagnetictheory.TheelectronsusepartofthisenergytoovercomethemetalsurfacetoitsThesuctionistheworkfunction,andtherestbecomesthekineticenergyoftheelectronsaftertheyleavethemetalsurface.Itisthusrealizedthatanatomoramoleculecantransformitsenergyintoelectromagneticfieldradiationorobtainenergyfromthefield,butitcanonlybedoneintheunitofphoton.

Thewaveoflightandthedualityoflight(quantity)arethenatureoflight.Thewave-particledualityofmicroscopicobjectssuchasphotons,electrons,protons,andneutronsisanimportantbasisfortheformationofquantummechanics.Startingfromthenatureofthisphotontostudythenatureoflightandtheinteractionbetweenlightandmatteriscalledquantumoptics,itsfoundationismainlyquantummechanicsorquantumelectrodynamics.Thegenerationanddisappearanceoflightinmoleculesandatomsisnotonlyaquestionofthenatureoflight,butalsorelatedtothestructureofmoleculesandatoms.Verifyingexperimentallyanddiscussingsuchproblemstheoreticallyisabranchofoptics,calledspectroscopy.

Thewaveoflightandthedualityoflight(quantity)arethenatureoflight.Thecontinuousfluctuationsinthemacroworldandthediscontinuousquantainthemicroworldaremutuallyexclusiveinthesimplifiedmechanicalconceptofclassicalphysics,butinreality,theyareunified.Later,itwasprovedindisputablynotonlytheoreticallybutalsoexperimentally:Butwiththisduality,matterinthemicroscopicworld,includingelectrons,protons,neutrons,andatoms,althoughtheyareparticles,havetheirownmass.Thecharacteristicsofwaverelatedtospeed(seewave-particleduality).

Theabove-mentionedquantumtheoryoflightpromotedthedevelopmentofmodernphysics.Inaddition,inthestudyoftheopticalphenomenonofmovingmedia,theMichelsoninterferometerwasusedinthe1880stomeasurethedifferenceinthespeedoflightdividedbythesamebeamintotwoperpendiculardirections.Theresultsshowthatthespeedoflightisconstant(seeMichelson-Morey'sexperiment),whichbecametheexperimentalbasisofEinstein'sspecialtheoryofrelativity.Thisfactisalsoaveryimportantachievementinmodernphysics.Therefore,theresearchresultsinopticshaveplayedadecisiveroleintheestablishmentofquantummechanicsandrelativity.Theabovetwouniversitytheoriesconstitutethetheoreticalbasisofmodernphysicsandevenmodernscienceandtechnology.

Modernoptics

Duetothediscoveryanddevelopmentoflasers,aseriesofnewopticalsubdisciplineshavebeenproducedanddevelopedrapidly.

Asearlyas1917,whenEinsteinwasstudyingatomicradiation,hediscussedindetailthattherearetwoformsofmatterradiation:oneisspontaneousradiation;theotherisinducedbyexternalphotons.Stimulatedradiation.Itisalsoforeseenthatstimulatedradiationcanproduceveryhigh-brightnessmonochromaticlightpropagatinginacertaindirection.Becauseofthesecharacteristics,sinceT.Mailmanfirstmadetheruby​​laserin1960,thestudyofopticalstimulatedemissionhasledtotherapiddevelopmentoflaserscienceandlasertechnology,andopenedupanumberofnewbranchdisciplinescloselyrelatedtothelaseritself.Inadditiontoquantumoptics,therearealsonon-linearoptics,laserspectroscopy,ultra-strongandultra-fastoptics,lasermaterialsandlaserphysics.

Inclassicalwaveoptics,mediumparametersareconsideredtohavenothingtodowiththeintensityoflight,andtheopticalprocessisusuallyexpressedbylineardifferentialequations.However,manynewphenomenahavebeendiscoveredinthecaseofstronglaserpassing.Ifitisfoundthattherefractiveindexisrelatedtothefieldstrengthofthelaser,therefractionangleofthelightattheinterfaceofthetwomediachangeswhenthebeamintensitychanges;theself-focusingandself-defocusingofthebeam;thefrequencyofthelightwavechangesafterpassingthroughsomemedia,resultingindoubleFrequency,sumfrequencyanddifferencefrequency,etc.Allthesephenomenaareincludedinthestudyofnonlinearoptics.

Laserisnowabletoproducehighlydirectional,highlymonochromatic,polarizationandfrequencytunablelightsourcesthatcanobtainultra-shortpulses,high-resolutionspectra,picoseconds(10-12s)Ultrashortpulsesandtunablelasertechnologyhavecausedprofoundchangesinclassicalspectroscopyanddevelopedintolaserspectroscopy.Atthesametime,high-power,femtosecondultra-shortpulselaserscanbeobtained,andthestudyoftheinteractionbetweenthistypeoflaserandmatterhasdevelopedintosuper-strongandultra-fastoptics.Theseemergingdisciplineshavebecomeimportantmeanstostudythemicrostructureandmicrodynamicprocessesofmatter,providingunprecedentednewtechnologiesforthestudyofthestructureanddynamicprocessesofatomicphysics,molecularphysics,condensedmatterphysics,molecularbiologyandchemistry.

Withthedevelopmentoflaserscienceandlasertechnologyandtheapplicationdevelopmentoflasersinmanyfields,newrequirementshavebeenputforwardfortheperformanceoflasermaterialsandcorrespondinglaserdevices.ThedevelopmentofnewlightsourcesandlasersinvolvesBasicissueshavebecomeanimportantcontentofmodernoptics,anditsdevelopmenttrendistheexpansionandtunablefrequencyofwavelength,thecompressionofopticalpulsewidth,andtheminiaturizationandsolidificationofdevices.

Thedevelopmentoverthepastfewdecadesshowsthatlaserscienceandlasertechnologyhavegreatlypromotedthedevelopmentofphysics,chemistry,lifesciencesandenvironmentalsciences,andhaveformedagroupofveryactiveemergingdisciplinesandinterdisciplinarysubjects,Suchaslaserchemistry,laserbiology,lasermedicine,informationoptics,etc.Atthesametime,lasershavebeenwidelyusedinprecisionmeasurement,remotesensingandtelemetry,communications,holography,medicaltreatment,materialprocessing,laserguidance,andlaser-inducednuclearfusion.

AppliedOptics

Becauseopticsiscomposedofmanybranchdisciplinescloselyrelatedtophysicsandhasawiderangeofapplications,therearealsoaseriesofbranchdisciplineswithstrongapplicationbackgroundthatalsobelongtothescopeofoptics.Suchasthephotometryandradiometryrelatedtothemeasurementofphysicalquantitiesofelectromagneticradiation;thecolorvisionandthemeasurementofpsychophysicalquantitiescausedbyelectromagneticradiationwiththenormalaveragehumaneyeasareceiver;andmanytechnicalopticssuchasopticalsystemsDesignandopticalinstrumenttheory,opticalmanufacturingandopticaltestingandinterferencemeasurement,thinfilmoptics,fiberopticsandintegratedoptics,etc.;therearealsobranchesthatintersectwithotherdisciplines,suchasastronomicaloptics,oceanoptics,remotesensingoptics,atmosphericoptics,physiologicalopticsAndweaponoptics,etc.

Disciplinaryprogress

Inrecentdecades,opticshasdevelopedmorerapidlyandhasenteredanewera.Disciplinaryprogresshasbecomeanimportantpartofmodernphysicsandthefrontiersofmodernscienceandtechnology..ThemostimportantachievementistoconfirmandperfectthetheoryofstimulatedemissionofatomsandmoleculespredictedbyEinsteinin1916,andtocreatemanyspecifictechnologiesforgeneratingstimulatedemission.WhenEinsteinstudiedradiation,hepointedoutthattherearetwokindsofspontaneousradiationandstimulatedradiation.Theemissionofthelightsourceisgenerallyspontaneousemission,inwhichtheprobabilityofstimulatedemissionissosmallthatitisnegligible.However,stimulatedradiationhasthepropertyofgeneratingradiationinthesamedirection,phase,frequencyandpolarization.Undercertainconditions,ifthestimulatedradiationcancontinuetoexciteotherparticles,causingachainreaction,theamplificationeffectisobtainedlikeanavalanche,andfinallymonochromaticradiation,theso-calledlaser,isgiven.ThefirsttoachievethiskindofquantumamplifiedradiationwasthemasercompletedbyC.Townsin1954.Thenin1960,T.Meymanusedruby​​tomakethefirstvisiblelightlaser;inthesameyear,hemadeahelium-neonlaser;in1962,asemiconductorlaserwasproduced;in1963,atunabledyelaserwasproduced.VariouslasersmadeinrecentdecadeshavecoveredtheentirewavebandfromX-ray,ultraviolet,visible,infraredandmicrowave.Becauselaserhasexcellentmonochromaticity,highbrightnessandgooddirectivity,sincetheinventionoflaser,laserscienceandlasertechnologyhavebeenrapidlydevelopedandwidelyused,causingmajorchangesintheentirescienceandtechnology.

Anotherimportantbranchofmodernopticsiscomposedofimagingoptics,holography,andopticalinformationprocessing.ThisbranchcanbetracedbacktothemicroscopeimagingtheoryproposedbyE.Abbein1873andtheexperimentalverificationdonebyA.Porterin1906;in1935,F.Zernikeproposedthecontrastobservationmethod,andZeiss(Zeiss)Thefactorymadephasecontrastmicroscopes,forwhichhewontheNobelPrizeinPhysicsin1953;in1948,D.Gaborproposedtheprincipleofwavefrontreconstructionforthepredecessorofmodernholography.Forthisreason,Gaborwonin1971NobelPrizeinPhysics.

Inthe1950s,mathematics,electronictechnology,andcommunicationtheorywerecombinedwithoptics.Theconceptsofspectrum,spatialfiltering,carrier,lineartransformationandrelatedoperationswereintroducedtooptics,andtheclassicimagingopticswasupdated.FormedFourieroptics.CoupledwiththecoherentlightprovidedbythelaserandthewavefrontreconstructionimprovedbyE.LeithandJ.Appartnex-holography,anewsubjectfieldhasbeenformedinrecentdecades-Opticalinformationprocessing.Fordecades,especiallysince1978,theapplicationoffiberopticshasbeendevelopedbyleapsandboundsduetothesuccessfulreductionofopticallossinopticalfibers.Itnotonlyprovidesfiberimagetransmissionandlighttransmissionfortheendoscopicopticalsystem,itisespeciallyimportantthatitissuccessfullyappliedtothecommunicationsystem,andtheopticalcablereplacesthecabletorealizetheopticalfibercommunication.Thisisanotherimportantachievementofmodernoptics,providinganewtechnologyforinformationtransmissionandprocessing.

Inmodernopticsitself,inadditiontononlinearoptics,laserspectroscopy,ultra-strongandultrafastoptics,lasermaterialsandlaserphysics,moreandmorepeoplearepayingattentiontothefollowingfields.Laser-inducednuclearfusionhasreachedalevelthatcanproducea"firepoint"inexploringtherealizationofcontrolledthermonuclearreactions.Laserspectroscopy,includinglaserRamanspectroscopy,high-resolutionspectroscopy,picosecondultrashortpulses,andtunablelasertechnology,hasgreatlychangedtraditionalspectroscopy,andhasbecomeanin-depthstudyofthemicrostructure,movement,andAnimportantmeansofenergyconversionmechanism.Itprovidesunprecedentedtechnologyforthestudyofdynamicprocessesincondensedmatterphysics,molecularbiologyandchemistry.Therealizationoflasercooling,Bose-Einsteincondensationandthebirthofatomiclasersareoneofthemajorbreakthroughsinphysicsattheendofthe20thcentury.Intermsofquantumcommunicationandquantumcomputing,sinceP.Shureproposedquantumparallelalgorithmsin1994,quantumcommunicationandquantumcomputinghavedevelopedintoanewinterdisciplinarycombinationofphysicsandinformationscience.Theoriesandexperimentsinthisareahaveachievedsignificantresults.progress.Similartoscanningtunnelingmicroscopes,aseriesofnear-fieldopticalscanningmicroscopetechnologieshavebeendeveloped,theresolutionhasreachedone-tenthofthewavelengthoflightwaves,andanewcombinationofoptics,scanningprobemicroscopyandspectroscopyhasbeenformed.Interdisciplinary-nearfieldoptics.Photoniccrystalisaperiodicdielectric(includingmetal)structure.Itsperiodcorrespondstothewavelengthoflight.Inthephotoniccrystal,thepropagationcharacteristicsoflightandtheinteractionofphotonswithatomsandmoleculeshaveundergoneessentialchanges,whichcanbecontrolled.Themovementofphotons.Thisisthephysicalbasisofanewclassofphotonicdevices.Modernopticshasnotonlypromotedthedevelopmentofphysics,butalsohasincreasinglyextensiveandin-depthintersectionswiththefieldsofchemistry,lifesciences,informationsciences,andmaterialssciences.Italsoprovidesbroadprospectsforapplicationdevelopmentandresearch,andhasbecomethebasisforthedevelopmentofhigh-techfields.Oneoftheimportantsubjectfoundations.

InternationalYearofLight

In2015,thefive-volumeopticalworkofArabscholarIbnKhashamwasbornexactlyonethousandyearsago.Forathousandyears,opticaltechnologyhasbroughttremendousprogresstohumancivilization.Tothisend,theUnitedNationsdeclared2015asthe"InternationalYearofLightandLight-BasedTechnologies"(hereinafterreferredtoastheInternationalYearofLight)tocommemoratethemajordiscoveriesofmankindinthefieldoflightoverthepastmillennia.

Related Articles
TOP